Neurotensin and dopamine interactions.

نویسندگان

  • E B Binder
  • B Kinkead
  • M J Owens
  • C B Nemeroff
چکیده

Interactions between the classical monoamine neurotransmitter dopamine (DA) and the peptide neurotransmitter neurotensin (NT) in the central nervous system (CNS) have now been investigated for over two decades. Interest in this topic has been sustained, primarily because of the potential clinical relevance of these interactions to schizophrenia and drug abuse. In the past five years, important new discoveries in the NT field have markedly expanded our previous database. Additional NT receptors have been cloned, and novel and refined techniques have contributed to a more detailed description of the anatomy of the CNS NT system. Additionally, lipophilic NT receptor antagonists, active in the CNS after peripheral administration, have rendered more facile the investigation of the physiologic importance of endogenous NT at electrophysiologic, neurochemical, and behavioral levels. In the present review, the discussion of NT/DA interactions will progress from a discussion of the anatomical interactions between these two systems, to electrophysiologic and neurochemical interactions, and finally to behavioral implications-always with focus toward the potential clinical relevance of the data. The discussion of interactions between NT and DA systems will be limited to those occurring within the CNS. Moreover, because the DA projections from the midbrain to the striatum account for the bulk of the DA innervation in the CNS, we will focus on NT/DA interactions within these brain regions. Last, because of the extensive literature on NT/DA interactions available in the rat, our discussion will be based primarily on studies using this species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons.

UNLABELLED Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autorecepto...

متن کامل

Neurotensin inhibits both dopamine- and GABA-mediated inhibition of ventral tegmental area dopamine neurons.

Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine h...

متن کامل

Neurotensin inhibits both dopamine and GABA mediated inhibition of ventral tegmental 1 area dopamine neurons

26 Dopamine is an essential neurotransmitter that plays an important role in a number of 27 different physiological processes and disorders. There is substantial evidence that the 28 neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate 29 dopamine neuron activity. In these studies we have used whole-cell patch clamp 30 electrophysiology in brain slices from mi...

متن کامل

Roles of intracellular cAMP and protein kinase A in the actions of dopamine and neurotensin on midbrain dopamine neurons.

The role of intracellular cAMP and protein kinase A in dopamine-induced inhibition of dopamine neurons and the attenuation of this inhibition by neurotensin were studied in rat midbrain slices. Spontaneous activity of dopamine cells was recorded extracellularly from both the ventral tegmental area and the substantia nigra. Perfusion of the slices with 8-bromo-cAMP and forskolin significantly at...

متن کامل

CB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin

Objective(s): Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s) by which antipsychotics affect brain neurotensin neurotransmission have no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pharmacological reviews

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2001